(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
dbl(S(0), S(0)) → S(S(S(S(0))))
unsafe(S(x)) → dbl(unsafe(x), 0)
unsafe(0) → 0
dbl(0, y) → y
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
unsafe(S(x)) →+ dbl(unsafe(x), 0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / S(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
dbl(S(0'), S(0')) → S(S(S(S(0'))))
unsafe(S(x)) → dbl(unsafe(x), 0')
unsafe(0') → 0'
dbl(0', y) → y
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
dbl(S(0'), S(0')) → S(S(S(S(0'))))
unsafe(S(x)) → dbl(unsafe(x), 0')
unsafe(0') → 0'
dbl(0', y) → y
Types:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
unsafe :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
unsafe
(8) Obligation:
Innermost TRS:
Rules:
dbl(
S(
0'),
S(
0')) →
S(
S(
S(
S(
0'))))
unsafe(
S(
x)) →
dbl(
unsafe(
x),
0')
unsafe(
0') →
0'dbl(
0',
y) →
yTypes:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
unsafe :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
Generator Equations:
gen_0':S2_0(0) ⇔ 0'
gen_0':S2_0(+(x, 1)) ⇔ S(gen_0':S2_0(x))
The following defined symbols remain to be analysed:
unsafe
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
unsafe(
gen_0':S2_0(
n4_0)) →
gen_0':S2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
unsafe(gen_0':S2_0(0)) →RΩ(1)
0'
Induction Step:
unsafe(gen_0':S2_0(+(n4_0, 1))) →RΩ(1)
dbl(unsafe(gen_0':S2_0(n4_0)), 0') →IH
dbl(gen_0':S2_0(0), 0') →RΩ(1)
0'
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
dbl(
S(
0'),
S(
0')) →
S(
S(
S(
S(
0'))))
unsafe(
S(
x)) →
dbl(
unsafe(
x),
0')
unsafe(
0') →
0'dbl(
0',
y) →
yTypes:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
unsafe :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
Lemmas:
unsafe(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':S2_0(0) ⇔ 0'
gen_0':S2_0(+(x, 1)) ⇔ S(gen_0':S2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
unsafe(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
dbl(
S(
0'),
S(
0')) →
S(
S(
S(
S(
0'))))
unsafe(
S(
x)) →
dbl(
unsafe(
x),
0')
unsafe(
0') →
0'dbl(
0',
y) →
yTypes:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
unsafe :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
Lemmas:
unsafe(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':S2_0(0) ⇔ 0'
gen_0':S2_0(+(x, 1)) ⇔ S(gen_0':S2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
unsafe(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)